Ferramenta de dimensionamento do dispositivo rotacional

Rotary Device

Unidade

Selecione a unidade

Forma e dimensões da mesa

Mesa redonda

Mesa retangular

Round Table Rectangular Table

Diâmetro da mesa

D = pol mm

A = pol mm

B = pol mm

Peso da mesa mass

W m = lb kg

Se você não tiver certeza sobre o peso mass

Espessura da mesa

t = pol mm

Material da mesa

ρ =

 

Dimensão do eixo de acionamento

Diâmetro do eixo

D2 = pol mm

Peso do eixo

W2 m2 = lb kg

Se você não tiver certeza sobre o peso mass

Comprimento

L = pol mm

Material

ρ2 =

 

Dimensionamento de carga e formato

Sem carga adicional Tipo cilindro Tipo pilar retangular
  Cylinder Type Rectangular pillar type

Diâmetro da carga

D1 = pol mm

A1 = pol mm

B1 = pol mm

Distância do centro da mesa ao centro da carga

Distance

r = pol mm

Número de cargas

n = pc

Peso da carga

W1 m1 = lb/pc kg/pc

Se você não tiver certeza sobre o peso mass

Altura da carga

h1 = pol mm

Material da carga

ρ1 =

 

Suporte da mesa (deixe os campos em branco se o coeficiente de fricção pode ser ignorado)

Coeficiente de fricção entre a mesa e o mecanismo de suporte

μ= Info

Distance from the table center to the supporting mechanism
(Please specify the diameter if you use Ball bearing)

Ball Bearing

l = pol mm

Eficiência do sistema

η= %

Correia e polias de transmissão ou engrenagens (Deixe os campos vazios se uma estrutura de acoplamento direta for usada)

Diâmetro do passo circular (PCD) da polia primária (engrenagem) ou diâmetro

Diâmetro do passo circular (PCD) da polia secundária (engrenagem) ou diâmetro

Dp1

=   pol mm

Dp2

=   pol mm

Peso da polia primária (engrenagem) mass

Peso da polia secundária (engrenagem) mass

Wp1 mp1

=   lb kg

Wp2 mp2

=   lb kg

 

 

Se você não tiver certeza sobre o peso mass

Se você não tiver certeza sobre o peso mass

Espessura da polia primária (engrenagem)

 

Espessura da polia secundária (engrenagem)

Lp1

=   pol mm

 

Lp2

=   pol mm

Material da polia primária (engrenagem)

 

Material da polia secundária (engrenagem)

ρp1

=

 

ρp2

=

Posição do mecanismo

Operação Horizontal

Operação Vertical

Horizontal operation Vertical operation

Posição do mecanismo

É necessário manter a carga mesmo após a alimentação ser desligada.
→ Você precisa de um freio eletromagnético.

É necessário manter a carga após o paragem do motor, mas não é necessário segurar depois que a fonte de alimentação é desligada.

Condições de funcionamento

Velocidade de operação

V1

=

  r/min

 

Aceleração / desaceleração

t1

=

  s

Velocidade de operação

V1

=

  r/min

V2

=

  r/min

 

Aceleração / desaceleração

t1

=

  s

Info

 

Inércia do rotor

JO

=

  oz·in kg·m 2

 

Relação de engrenagem

i

=

 

 

Se a inércia do rotor e a relação de transmissão forem desconhecidas, o torque de aceleração será calculado com uma relação de inércia de 5: 1 (veja as dicas de seleção do motor que aparecerão na janela de resultados para o detalhe).

Positioning

 

Distância de posicionamento

θ

=

 °

 

Tempo de posicionamento

t0

=

 s    

Tempo de parada

ts

=

 s

 

Se for necessário um tempo específico de aceleração / desaceleração

t1

=

 s

 

Se for necessária uma velocidade de operação específica

V

=

  r/min

Se a distância de posicionamento for dada e a aceleração / desaceleração for desconhecida, ela é calculada como um quarto do tempo de Posicionamento.

Precisão de parada

Precisão de parada

±

Δθ

=

 °

or

±

Δl

=

pol mm

Circunferência do centro de carga

  Stopping Accuracy

Fator de segurança

Fator de segurança


The following is the estimated requirements. Please contact 1-800-468-3982 ( from overseas 1-847-871-5931 ) for assistance or questions.

Sizing Results

 

Load Inertia 

JL

= [oz·in [kg·m 2]

 

 

Required Speed 

V1

= [r/min]

 

 

V2

= [r/min]

 

 

Required Torque 

T

= [lb·in] = [oz·in] [N·m]

 

 

RMS Torque 

Trms

= [lb·in] = [oz·in] [N·m]

 

 

Acceleration Torque 

Ta

= [lb·in] = [oz·in] [N·m]

 

 

Load Torque

TL

= [lb·in] = [oz·in] [N·m]

 

 

Required Stopping Accuracy

Δθ

= [deg]

 

 

Other Requirement(s)

To print the calculation report, click    Full Report
To view the motor selection tips, click    Tips


×

Call 1-800-GO-VEXTA(468-3982) or 1-847-871-5931

Impressão

- given information -

Table shape and dimensions

 

Table type

 

 

Diameter

 

D =  [in] [mm]

 

Width

 

A =  [in] [mm]

 

Depth

 

B =  [in] [mm]

 

Weight Mass

 

W m [lb] [kg]

 

Thickness

 

t =  [in] [mm]

 

Material

ρ =  [oz/in [kg/m 3]

Drive shaft dimension

 

Diâmetro do eixo

 

D2 [in] [mm]

 

Shaft peso mass

 

W2 m2 [lb] [kg]

 

Shaft length

 

L =  [in] [mm]

 

Shaft material

ρ2 [oz/in [kg/m 3]

Load shape and dimensions

 

Load type

 

 

Diameter

 

D1 [in] [mm]

 

Width

 

A1 [in] [mm]

 

Depth

 

B1 [in] [mm]

 

Distance from the table center to the load center

 

r =  [in] [mm]

 

Number of loads

 

n =  pc

 

Load peso mass

 

W1 m1 [lb] [kg]

 

Load height

 

h1 [in] [mm]

 

Load material

ρ1 [oz/in [kg/m 3]

Table support

 

Friction coefficient between the table and the supporting mechanism

 

μ = 

 

Distance from the table center to the supporting mechanism

 

l =  [in] [mm]

 

System efficiency

 

η =  %

Transmission belt and pulleys or gears

 

Primary pulley (gear)

Secondary pulley (gear)

 

diâmetro do círculo de passo

Dp1

= [in] [mm]

Dp2

= [in] [mm]

 

peso mass

Wp1 mp1

= [lb] [kg]

Wp2 mp2

= [lb] [kg]

 

espessura

Lp1

= [in] [mm]

Lp2

= [in] [mm]

 

material

ρp1

= [oz/in [kg/m 3]

ρp2

= [oz/in [kg/m 3]

 

Mechanism Condition

Mechanism Condition

 

Other requirement(s)

 

É necessário segurar a carga mesmo depois que a fonte de alimentação está desligada?

 

É necessário manter a carga após o motor parar, mas não é necessário segurar depois que a fonte de alimentação está desligada?

Operating conditions

 

Operação de velocidade fixa

Operating speed

V1

=

[r/min]

 

 

Tempo de aceleração / desaceleração

t1

=

[s]

Operating conditions

 

Operação de velocidade variável

Operating speed

V1

=

[r/min]

 

V2

=

[r/min]

 

 

Tempo de aceleração / desaceleração

t1

=

[s]

Operating conditions

 

Operação de posicionamento

Rotor inertia

JO

=

[oz·in kg·m 2]

 

Gear ratio

i

=

 

Positioning distance

θ

=

 °

 

Positioning time

t0

=

[s]

 

Stopping time

ts

=

[s]

 

Tempo de aceleração / desaceleração

t1

=

[s]

 

Velocidade especificada

V

=

[r/min]

Stopping accuracy

 

Stopping accuracy

± Δθ

=  °

 

 

± Δl

= [in] [mm]

Safety factor

 

Safety factor

S·F

=


- calculated result -

Inércia de carga

 

Jt

=   (1/8) (w × 16 ) × D2 (π/32) ρ t × D4 (1/12) (w × 16) (A2 + B2) (1/12) p A B t (A2 + B2) (1/8) m × (D × 10-3)2 (π/32) ρ (t × 10-3 ) × (D × 10-3)4 (1/12) m ( (A × 10-3)2 + (B × 10-3)2) (1/12) ρ (A × 10-3) (B × 10-3) (t × 10-3 ) ( (A × 10-3 )2 + (B × 10-3 )2)

 

=   (1/8) ( × 16 ) × 2 (3.4/32) × × 4 (1/12) ( × 16 ) × ( 2 + 2 ) (1/12) × × × × ( 2 + 2 ) (1/8) × × ( × 10-3)2 (3.4/32) × ( × 10-3) × ( × 10-3)4 (1/12) × ((× 10-3)2 + (× 10-3)2 ) (1/12) × × ( × 10-3) × ( × 10-3) × ( × 10-3) (( × 10-3)2 + ( × 10-3)2 )

= [oz·in [kg·m 2]

 

JS

=   (π/32) ρ2 L D24 (1/8) (W2 × 16) × D22 (π/32) ρ (L × 10-3) (D2 × 10-3)4 (1/8) m2 (D2 × 10-3)2

 

=   ( 3.14 / 32 ) × × × 4 (1/8) × ( × 16 ) × 2 =   ( 3.14 / 32 ) × × ( × 10-3) × ( × 10-3)4 (1/8) × × ( × 10-3)2

= [oz·in [kg·m 2]

 

J1

=   ((1/8) (W1 × 16) × D12 + (W1 × 16) r2) × n ((π/32) ρ h1 D14 + (π/4) ρ h1 D12 r2) × n (1/12) (W1 × 16) × (A12 + B12 + 12 × r2) × n (1/12) (ρ A1 B1 h1 (A12 + B12 + 12 × r2) × n ((1/8) m1( D1 ×10-3)2 + m1 (r ×10-3)2) × n ((π/32) ρ (h1 ×10-3) (D1 ×10-3)4 + (π/4) ρ (h1 ×10-3) (D1 ×10-3)2 (r ×10-3)2 ) × n (1/12) m1 ((A1 ×10-3)2 + (B1 ×10-3)2 + 12 × (r ×10-3)2) × n (1/12) ρ (A1 ×10-3) (B1 ×10-3) (h1 ×10-3) ((A1 ×10-3)2 + (B1 ×10-3)2 + 12 × (r ×10-3)2) × n

 

=   ((1/8) × ( × 16) × 2 + ( × 16) × 2) × ((3.14/32) × × × 4 + (3.14/4) × × 2 × 2) × (1/12) ( × 16) × ( 2 + × 2 + 12 × 2) × (1/12) ( × × × ) × ( 2 + 2 + 12 × 2) × ((1/8) × × ( ×10-3)2 + ( × 16) × ( ×10-3)2) × ((3.14/32) × × ( ×10-3) × ( ×10-3)4 + (3.14/4) × ( ×10-3) × ( ×10-3)2 × ( ×10-3)2) × (1/12) × × (( ×10-3)2 + × ( ×10-3)2 + 12 × ( ×10-3)2) × (1/12) × × ( ×10-3) × ( ×10-3) × ( ×10-3) × (( ×10-3)2 + ( ×10-3)2 + 12 × ( ×10-3)2) ×

= [oz·in [kg·m 2]

 

JDp1

=  ( 1 / 8 ) wp1 × 16 × Dp1 mp1 × (Dp1×10-3) 2

 

=   ( 1 / 8 ) ×  × 16 × ( ×10-3) 2

= [oz·in [kg·m 2]

 

JDp1

=   ( π / 32 ) ρp1 ( Lp1 ×10-3) ( Dp1 ×10-3) 4

 

=   ( 3.14 / 32 ) ×  × ( ×10-3)  × ( ×10-3) 4

= [oz·in [kg·m 2]

 

JDp2

=   ( 1 / 8 ) wp2 × 16 × Dp2 mP2 × (DP2×10-3) 2

 

=   ( 1 / 8 ) ×  × 16 × ( ×10-3) 2

= [oz·in [kg·m 2]

 

JDp2

=  ( π / 32 ) ρp2 ( Lp2 ×10-3) ( Dp2 ×10-3) 4

 

=   ( 3.14 / 32 ) ×  × ( ×10-3)  × ( ×10-3) 4

= [oz·in [kg·m 2]

 

JL

=   ( Jt + Js + Jl + JDp2 ) ( Dp1 / Dp2 )2 + JDp1

 

= (  +  +  +  ) × (  /  )2 +

[oz·in [kg·m 2]

 

JL

=  Jt + Js + Jl

 

=  (  +  + )

[oz·in [kg·m 2]

Velocidade requerida

 

Vm

=   V   ( Dp2 / Dp1 )

 

=     × (  /  )

= [r/min]

 

Vm1

=   V1 ( Dp2 / Dp1 )

 

=     × (  /  )

= [r/min]

 

Vm2

=   V2 ( Dp2 / Dp1 )

 

=     × (  /  )

= [r/min]

 

Vm

=  V × ( Dp2 / Dp1 )

 

=   × (  /  )

= [r/min]

 

Vm

  

( θ / 360) × ( 60 / ( t0 - t1 ) ) × ( Dp2 / Dp1 )

 

(  / 360)  ) × (60 / ( - )) × (  /  )

= [r/min]

Torque necessário

 

T

=   ( Ta + TL ) ( Factor de segurança )

 

= (  +  ) ×

= [lb·in] [N·m]

 

= [oz·in]

Torque de RMS

 

Trms

=   √(((( Ta + TL )2 × t1 ) + ( TL2 × (t0 - 2 × t1 )) + (( Ta - TL )2 × t1 )) / ( t0 + ts )) × (Safety Factor)

 

=   √ ((((  +  )2 ×  ) + ( 2 × (  - 2 ×  )) + ((  -  )2 ×  )) / (  +  )) ×

= [lb·in] [N·m]

 

= [oz·in]

Torque de aceleração

 

Ta

=   ( JL / 386 ) ( Vm / ( 9.55 × t1 )) ( 1 / 16 )

 

= (   / 386 ) × (  / ( 9.55 ×  )) × ( 1 / 16 )

= [lb·in] [N·m]

 

= [oz·in]

 

Ta

=   ( JL / 386 ) ( Vm / ( 9.55 × t1 )) ( 1 / 16 )

 

= (  / 386 ) × (  / ( 9.55 ×  )) × ( 1 / 16 )

= [lb·in] [N·m]

 

= [oz·in]

 

Ta

=   (( 1.2 × JL ) / 386 ) × ( Vm / ( 9.55 × t1 )) (( JO + JL )/386) × ( Vm / ( 9.55 × t1 )) (( JO × i2 + JL )/386) × ( Vm / ( 9.55 × t1 )) × ( 1 / 16 ) ( 1.2 × JL ) × ( Vm / ( 9.55 × t1 )) ( JO + JL ) × ( Vm / ( 9.55 × t1 )) ( JO × i2 + JL) × ( Vm / ( 9.55 × t1 ))

 

= (( 1.2 × / 386 ) × ( / ( 9.55 × )) × ( 1 / 16 ) (( + )/386) × ( / ( 9.55 × )) × ( 1 / 16 ) (( × 2 + )/386) × ( / ( 9.55 × )) × ( 1 / 16 ) ( 1.2 × ) × ( / ( 9.55 × ) ( + ) × ( / ( 9.55 × )) ( × 2 + ) × ( / ( 9.55 × ))

= [lb·in N·m]

 

= [oz·in]

Torque de carga

 

WT mT

=   W m (1/16) (π / 4) ρ t D2 (π / 4) ρ (t ×10-3 ) (D ×10-3)2 (1/16) ρ A B t ρ (A ×10-3) (B ×10-3) (t ×10-3)

 

=   (1/16) (3.14 / 4) × × × 2 (3.14 / 4) × × ( ×10-3 ) × ( ×10-3)2 (1/16) × × × × × ( ×10-3) × ( ×10-3) × ( ×10-3)

[lb Kg]

 

W1 m1

=   No additional load w1 m1 × n (1/16) (π / 4) ρ1 h1 D12 n (π / 4) ρ1 (h1 × 10-3 ) (D1 × 10-3)2 n (1/16) ρ1 A1 B1 h1 n 1 (A1 × 10-3 ) (B1 × 10-3 ) (h1 × 10-3)) × n

 

=   0 × (1/16) × (3.14 / 4) × × × 2 × × (3.14 / 4) × × ( × 10-3) × ( × 10-3)2 × (1/16) × × × × × × × ( × 10-3) × ( × 10-3) × ( × 10-3) ×

= [lb Kg]

 

TL

=   ( WT + W1) µ 9.8 ( mT + m1) µ (l × 10-3) (1 / (η × 0.01)) ( W1 /2 ) r ( 9.8 m1 /2) (r × 10-3) (1 / (η × 0.01)) ( Dp1 / Dp2 )

 

=   9.8 × ( + ) × × ( × 10-3) × (1 / ( × 0.01)) ( / 2 ) × ( 9.8 × / 2) × ( × 10-3) × (1 / ( × 0.01)) × (  /  )

= [lb·in] [N·m]

 

=   [oz·in]

Exigência de parada obrigatória

 

Δθ

=   Δθ Δl ( 360° / π D ) Δl ( 360° / 2 π r ) ( Dp2 / Dp1 )

 

=    × ( 360 / (3.14 × )  )  × ( 360 / (2 × 3.14 × )  ) × (  /  )

[deg]

Other requirement(s)

 

 


- final do relatório -

Atendimento e Suporte

Service and Support

Horário Comercial:

Segunda a Sexta

8:30 to 17:00 horário de Brasilia

 

Vendas, Atendimento ao Cliente e Suporte Técnico:

+55-11-3266-6018


 

©2017 - Oriental Motor do Brasil Ltda. - Todos os direitos reservados

Friction coefficient table (reference)

Materials

Dry

Lubricated

Alumínio

Alumínio

1.0

0.3

Alumínio

Aço

0.6

 

 

Latão

Aço

0.5

 

 

Graphite

Aço

0.1

0.1

Polythene

Aço

0.2

0.2

Polystyrene

Aço

0.3

0.3

Rubber

Aço

0.4

 

 

Aço

Aço

0.8

0.2

Teflon

Aço

0.04

0.04

Wood

Wood

0.5

0.2

Operação de posicionamento

Step 1 :

Leave the rotor inertia Jo and the gear ratio i blank if you have not selected any motor (or geared motor) yet. Then, fill in the rest of the form. The software will temporary calculate the acceleration torque with a load/rotor inertia ratio of 5:1.

Step 2 :

Select a product based on the required torque and the required speed. Then, confirm the inertia ratio to be within the recommendation. (See the motor selection tips that will appear on the result window for the detail)

Step 3 :

Return to the form and enter the rotor inertia Jo and the gear ratio i of the product you have selected to calculate the torque requirement using that particular product. If you selected a round shaft type motor (without gearhead), leave i blank or enter 1.

Rotor inertia Jo :

This value is found in the specification tables for stepping motor products.

Gear ratio i :

This value is the gear ratio of the geared motor product you selected.
* These values are only used to calculate a more accurate acceleration torque.